

Practice Exam for Design of Experiments

- 1. Identify all the statements below regarding **DOE** that are **True**:
 - Every process has 3 common features: inputs, the process and technical requirements.
 - The full factorial DOE is the best design to use when your objective is to screen out critical and non-critical factors.
 - Replication increases the sample size and the degrees of freedom allow us to analyze interaction effects using ANOVA.
 - Reducing experimental error increases the accuracy of your conclusions about the effect of each factor in a DOE.
- 2. Identify all the statements below regarding **DOE** that are **False**:
 - The independent variables (x) associated with a DOE are the outputs of the process.
 - Uncontrollable factors (noise) can cause variation in the response variable that's called systematic error.
 - Response variables represent the outcome of a process or experiment.
 - The estimate of the effects of each factor within a DOE becomes more precise when we replicate an experiment.
- 3. Identify all the statements below regarding **DOE** that are **True**:
 - A level refers to specific settings of a response variable.
 - One large DOE is considered better than multiple smaller DOE's.
 - A process can have input factors that are uncontrollable.
 - The order of a design refers to the chronological sequence in which you execute the various experiment.
- 4. Identify all the statements below regarding **DOE** that are **False**:
 - Reducing the effect of an uncontrollable factor would decrease the robustness of the process.
 - Blocking improves the power of a design, but increases the potential for confounding factors.
 - The inputs of a DOE are also referred to as Factors.
 - Unexplainable variation in your response variable is called experimental error.

- 5. Identify all the statements below regarding **DOE** that are **True**:
 - There are three types of experimental error associated with a DOE random error, systematic error, and technical error.
 - Interactions can be fully analyzed in a fractional factorial experiment where all possible combinations of levels and factors are studied.
 - A treatment is a unique combination of factors and levels within an experiment.
 - Replicating a design increases the degrees of freedom of the ANOVA analysis to ensure the ability to analyze all interactions.
- 6. Identify all the statements below regarding **DOE** that are **False**:
 - Each repetition of an experiment is called a treatment.
 - You perform an experiment and the ANOVA analysis indicates that your blocking factor has a statistically significant impact on the response variable. This is an indication that you did not block the experiment appropriately.
 - A full factorial experiment is one in which every combination of factors and levels is included within the experiment.
 - Confounding should be expected to occur when performing a fractional factorial experiment.
- 7. Error in your measurement system is an example of which type of experimental error in a DOE:
 - Human Error
 - Operator Error
 - Systematic Error
 - Random Error
 - Technical Error
- 8. How many treatments would be required for a DOE with 6 factors where a half factorial design is chosen:
 - 128
 - 64
 - 32
 - 16
 - 8
 - 4

- 9. How many treatments would be required for a DOE with 10 factors where a full factorial design is chosen:
 - 64
 - 128
 - 256
 - 512
 - 1024
 - 2048

10. How many treatments would be required for a DOE with 4 factors where a quarter factorial design is chosen:

- 1
- 2
- 4
- 8
- 16

11. How many treatments would be required for a DOE with 9 factors where a half factorial design is chosen:

- 1025
- 512
- 256
- 128
- 64

12. How many treatments would be required for a DOE with 5 factors where a full factorial design is chosen:

- 64
- 32
- 16
- 8
- 4

- 13. How many treatments would be required for a DOE with 8 factors where a quarter factorial design is chosen:
 - 256
 - 128
 - 64
 - 32
 - 16
 - 8
- 14. Which Quality Guru is often credited with introducing many innovations in the world of DOE including Design Robustness:
 - W. Edwards Deming
 - Walter Shewhart
 - Joseph M. Juran
 - Genichi Taguchi
 - Kaoru Ishikawa

15. The ANOVA Analysis associated with a DOE assumes your data follows which probability distribution:

- The Normal Distribution
- The Exponential Distribution
- The Poisson Distribution
- The Binomial Distribution
- 16. Fill in the blank: A _______ is a statistical method that allows you to study and quantify the relationship between the inputs and outputs of a process or product.
 - Pareto Chart
 - Design of Experiments
 - Control Chart
 - Flow Diagram
 - Scatter Diagram

17. Fill in the blank: _______ is the act of performing a designed experiment all over again.

- Blocking •
- Randomization
- Power
- Replication
- Robustness
- 18. Fill in the blank: _______ is the degree to which a product or process is unaffected by the variation of a particular factor.
 - Blocking •
 - Randomization •
 - Power
 - Replication •
 - Robustness •
- 19. Fill in the blank: A ______ design is used to study a process to determine which factors are critical and which are not.
 - Screening/Characterization Design •
 - Comparative Design •
 - Modeling/Optimization Design •
 - Full Factorial Design
 - Orthogonal Array
- 20. Identify all of the tools below can be used to reduce or eliminate the random error associated with uncontrollable factors within a DOE.
 - Blocking •
 - Replication •
 - Randomization •
 - Confounding •
 - Efficiency •
 - Power

21. Fill in the blank: A _____

_ is one where all of the treatments have the same number of

- observations or replications.
- **Balanced Design** •
- Full Factorial Design •
- Fractional Factorial
- Random Design
- Efficient Design ٠

22. Fill in the blank: A ______ Is one whose order of treatments is determined at random.

- Blocked Design •
- Efficient Design •
- Randomized Design
- Orthogonal Design
- Replicate Design

23. Fill in the blank: Two factors are said to be ______ when the response variable changes when both factors are varied simultaneously.

- confounding
- replicates
- balanced
- efficient
- randomized
- interacting •

24. Fill in the blank: Two factors are ______ when their effects are indistinguishably combined to affect the response variable.

- confounding
- replicates •
- balanced •
- efficient
- randomized
- interacting

- 25. You performed a DOE and have created the Interaction Effects Plot below, how could you describe the relationship between Factor A & B:
 - The factors are confounding
 - The factors appear balanced and efficient
 - No conclusion can be made, more replicates are needed
 - The treatment order was appropriately randomized
 - The factors appear to be interacting strongly

26. You performed a full factorial DOE to improve the yield of a process with two factors at two levels and have measured the following response values. What is the estimated effect of Factor A:

		Fac	tors	Response
		А	В	% Yield
Its	1	+	+	64
nen	2	-	+	75
eatr	3	+	-	87
⊢ 4		-	-	95

- -9.5
- -21.5
- 11
- -1.5
- -8

27. You performed a full factorial DOE to improve the yield of a process with two factors at two levels and have measured the following response values. What is the estimated effect of Factor B:

		Fac	tors	Response
		А	В	% Yield
Its	1	+	+	64
nen	2	-	+	75
eatr	3	+	-	87
Tro	4	-	-	95

- -9.5
- -21.5
- 11
- -1.5
- -8
- 28. You performed a full factorial DOE to improve the yield of a process with two factors at two levels and have measured the following response values. What is the estimated effect of the interaction between A & B.

		Fac	tors	Response
		А	В	% Yield
Its	1	+	+	64
nen	2	-	+	75
eatr	3	+	-	87
Tro	4	-	-	95

- -9.5
- -21.5
- 11
- -1.5
- -8

29. You performed a full factorial DOE to improve the yield of a process with three factors at two levels.

Identify all of the interaction effects below that should be considered "highs" when analyzing interactions:

			Factors			Interactions	5
		Α	В	С	AB	AC	BC
	1	+	+	+		Α	
	2	+	+	-	В		
nts	3	+	-	+		С	
mei	4	+	-	-			D
eati	5	-	+	+		E	
Tre	6	-	+	-	F		
	7	-	-	+		G	
	8	-	-	-			Н

- A
- B
- C
- D
- E
- F
- G
- H

30. You performed a full factorial DOE to improve the yield of a process with three factors at two levels.

Identify all of the treatments that would be considered "lows" for the second order interaction.

			Factors	
		Α	В	С
	1	+	+	+
	2	+	+	-
nts	3	+	-	+
ner	4	+	-	-
eatr	5	-	+	+
Tr	6	-	+	-
	7	-	-	+
	8	-	-	-

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8

31. You want to perform a DOE for a process with 4 factors, however you can only afford 6 treatment combinations.

You decide to do a quarter factorial with the following treatments.

		Factors							
	Α	В	С	D					
5	-	+	+	+					
6	-	+	-	+					
11	+	-	+	-					
12	+	+							

Interactions										
AB AC AD BC BD CD										
-	-	-	+	+	+					
-	+	-	-	+	-					
-	+	-	-	+	-					
-	-	-	+	+	+					

- Main Effects of Factors A & B
- Main Effects of Factors B & C
- Main Effects of Factors A & D
- Main Effects of Factors B & D
- Interaction Effect AB and Interaction Effect AD
- Interaction Effect BC and Interaction Effect CD
- Interaction Effect AC and Interaction Effect BC
- Interaction Effect BD and Interaction Effect AB

32. You want to perform a DOE for a process with 4 factors, however you can only afford 8 treatment combinations.

You decide to do a half factorial with the following treatments.

		Fac	tors	
	Α	В	С	D
1	+	+	+	+
2	+	+	-	+
3	+	-	+	+
4	+	-	-	+
13	-	+	+	-
14	-	+	-	-
15	-	-	+	-
16	-	-	-	-

	Interactions										
AB	AB AC AD BC BD CD										
+	+	+	+	+	+						
+	-	+	-	+	-						
-	+	+	-	-	+						
-	-	+	+	-	-						
-	-	+	+	-	-						
-	+	+	-	-	+						
+	-	+	-	+	-						
+	+	+	+	+	+						

- Main Effects of Factors A & B
- Main Effects of Factors B & C
- Main Effects of Factors A & D
- Main Effects of Factors B & D
- Interaction Effect BC and Interaction Effect AC
- Interaction Effect AC and Interaction Effect CD
- Interaction Effect BC and Interaction Effect AD
- Interaction Effect AB and Interaction Effect BD

33. You want to perform a DOE for a process with 4 factors, however you can only afford 8 treatment combinations.

You decide to do a half factorial with the following treatments.

			Fac	tors			
		Factor A	Factor B	Factor C	Factor D		
	1	+	+	+	+		
nts	3	+	-	-	+		
	5	-	+	-	+		
ner	7	-	-	+	+		
eatı	9	+	+	+	-		
Tre	11	+	-	-	-		
	13	-	+	-	-		
	15	-	-	+	-		

Interactions									
AB AC AD BC BD C									
+	+	+	+	+	+				
•	-	+	+	-	-				
•	+	-	i.	+	-				
+	-	-	1	-	+				
+	+	-	+	-	-				
-	-	-	+	+	+				
-	+	+	-	-	+				
+	-	+	-	+	-				

- Main Effects of Factors B & C
- Interaction Effect AD and Interaction Effect CD
- Main Effects of Factors A & the Interaction Effect of AB
- Main Effects of Factors B & C
- Interaction Effect BC and Interaction Effect BD
- Main Effects of Factors B & the Interaction Effect of AC
- Main Effects of Factors A & D
- Interaction Effect AB and Interaction Effect CD
- Main Effects of Factors C & the Interaction Effect of BC

34. You performed a half factorial DOE to improve the yield of a process with four factors at two levels.

Identify all of the interaction effects below that should be considered "lows" when analyzing the interaction effects:

			Fac	tors				Intera	ctions		
		Factor A	Factor B	Factor C	Factor D	AB	AC	AD	BC	BD	CD
	1	+	+	+	+			Α			
	3	+	-	-	+					В	
nts	5	-	+	-	+	С					
nei	7	-	-	+	+		D				
eati	9	+	+	+	-				E		F
Tre	11	+	-	-	-					G	
	13	-	+	-	-		Н				
	15	-	-	+	-				I		

- A
- B
- C
- D
- E
- F
- G
- H

• |

Solutions for Practice Exam

- 1. Identify all the statements below regarding **DOE** that are **True**:
 - Every process has 3 common features: inputs, the process and technical requirements.
 - The full factorial DOE is the best design to use when your objective is to screen out critical and non-critical factors.
 - Replication increases the sample size and the degrees of freedom allow us to analyze interaction effects using ANOVA.
 - Reducing experimental error increases the accuracy of your conclusions about the effect of each factor in a DOE.
- 2. Identify all the statements below regarding **DOE** that are **False**:
 - The independent variables (x) associated with a DOE are the outputs of the process.
 - Uncontrollable factors (noise) can cause variation in the response variable that's called systematic error.
 - Response variables represent the outcome of a process or experiment.
 - The estimate of the effects of each factor within a DOE becomes more precise when we replicate an experiment.
- 3. Identify all the statements below regarding **DOE** that are **True**:
 - A level refers to specific settings of a response variable.
 - One large DOE is considered better than multiple smaller DOE's.
 - A process can have input factors that are uncontrollable.
 - The order of a design refers to the chronological sequence in which you execute the various experiment.
- 4. Identify all the statements below regarding **DOE** that are **False**:
 - Reducing the effect of an uncontrollable factor would decrease the robustness of the process.
 - Blocking improves the power of a design, but increases the potential for confounding factors.
 - The inputs of a DOE are also referred to as Factors.
 - Unexplainable variation in your response variable is called experimental error.

- 5. Identify all the statements below regarding **DOE** that are **True**:
 - There are three types of experimental error associated with a DOE random error, systematic error, and technical error.
 - Interactions can be fully analyzed in a fractional factorial experiment where all possible combinations of levels and factors are studied.
 - A treatment is a unique combination of factors and levels within an experiment.
 - Replicating a design increases the degrees of freedom of the ANOVA analysis to ensure the ability to analyze all interactions.
- 6. Identify all the statements below regarding **DOE** that are **False**:
 - Each repetition of an experiment is called a treatment.
 - You perform an experiment and the ANOVA analysis indicates that your blocking factor has a statistically significant impact on the response variable. This is an indication that you did not block the experiment appropriately.
 - A full factorial experiment is one in which every combination of factors and levels is included within the experiment.
 - Confounding should be expected to occur when performing a fractional factorial experiment.
- 7. Error in your measurement system is an example of which type of experimental error in a DOE:
 - Human Error
 - Operator Error
 - Systematic Error
 - Random Error
 - Technical Error
- 8. How many treatments would be required for a DOE with 6 factors where a half factorial design is chosen:
 - 128
 - 64
 - 32
 - 16
 - 8
 - 4

Half Factorial Design: Number of Treatments = $\frac{Levels^{Factors}}{2} = 2^{F-1} = 2^{6-1} = 32$

- 9. How many treatments would be required for a DOE with 10 factors where a full factorial design is chosen:
 - 64
 - 128
 - 256
 - 512
 - 1024
 - 2048

Full Factorial Design : Number of Treatments = $Levels^{Factors} = 2^{10} = 1024$

10. How many treatments would be required for a DOE with 4 factors where a quarter factorial design is chosen:

- 1
- 2
- 4
- 8
- 16

Quarter Factorial Design: Number of Treatments = $\frac{Levels^{Factors}}{4} = \frac{L^F}{4} = \frac{2^F}{2^2} = 2^{F-2} = 2^{4-2} = 2^2 = 4$

11. How many treatments would be required for a DOE with 9 factors where a half factorial design is chosen:

- 1025
- 512
- 256
- 128
- 64

Half Factorial Design: Number of Treatments = $\frac{Levels^{Factors}}{2} = 2^{F-1} = 2^{9-1} = 256$

12. How many treatments would be required for a DOE with 5 factors where a full factorial design is chosen:

- 64
- 32
- 16
- 8
- 4

Full Factorial Design : Number of Treatments = $Levels^{Factors} = 2^5 = 32$

- 13. How many treatments would be required for a DOE with 8 factors where a quarter factorial design is chosen:
 - 256
 - 128
 - 64
 - 32
 - 16
 - 8

Quarter Factorial Design: Number of Treatments = $\frac{Levels^{Factors}}{4} = \frac{L^F}{4} = \frac{2^F}{2^2} = 2^{8-2} = 2^6 = 64$

- 14. Which Quality Guru is often credited with introducing many innovations in the world of DOE including Design Robustness:
 - W. Edwards Deming
 - Walter Shewhart
 - Joseph M. Juran
 - Genichi Taguchi
 - Kaoru Ishikawa

15. The ANOVA Analysis associated with a DOE assumes your data follows which probability distribution:

- The Normal Distribution
- The Exponential Distribution
- The Poisson Distribution
- The Binomial Distribution
- 16. Fill in the blank: A ______ is a statistical method that allows you to study and quantify the relationship between the inputs and outputs of a process or product.
 - Pareto Chart
 - Design of Experiments
 - Control Chart
 - Flow Diagram
 - Scatter Diagram

17. Fill in the blank: _____

is the act of performing a designed experiment all over again.

- Blocking
- Randomization
- Power
- Replication
- Robustness

18. Fill in the blank: ______ is the degree to which a product or process is unaffected by the variation of a particular factor.

- Blocking
- Randomization
- Power
- Replication
- Robustness

19. Fill in the blank: A ______ design is used to study a process to determine which factors are critical and which are not.

- Screening/Characterization Design
- Comparative Design
- Modeling/Optimization Design
- Full Factorial Design
- Orthogonal Array

20. Identify all of the tools below can be used to reduce or eliminate the random error associated with uncontrollable factors within a DOE.

- Blocking
- Replication
- Randomization
- Confounding
- Efficiency
- Power

21. Fill in the blank: A _____

_ is one where all of the treatments have the same number of

- observations or replications.
- **Balanced Design** •
- Full Factorial Design
- Fractional Factorial
- Random Design
- Efficient Design ٠

22. Fill in the blank: A ______ Is one whose order of treatments is determined at random.

- Blocked Design •
- Efficient Design •
- Randomized Design
- Orthogonal Design
- Replicate Design ٠

23. Fill in the blank: Two factors are said to be ______ when the response variable changes when both factors are varied simultaneously.

- confounding •
- replicates •
- balanced •
- efficient
- randomized
- interacting

24. Fill in the blank: Two factors are ______ when their effects are indistinguishably combined to affect the response variable.

- confounding •
- replicates
- balanced •
- efficient •
- randomized
- interacting

- 25. You performed a DOE and have created the **Interaction Effects Plot** below, how could you describe the relationship between Factor A & B:
 - The factors are confounding
 - The factors appear balanced and efficient
 - No conclusion can be made, more replicates are needed
 - The treatment order was appropriately randomized
 - The factors appear to be interacting strongly

26. You performed a full factorial DOE to improve the yield of a process with two factors at two levels and have measured the following response values. What is the estimated effect of Factor A:

		Factors		Response
		А	В	% Yield
Its	1	+	+	64
nen	2	-	+	75
Treatr	3	+	-	87
	4	-	-	95

- -9.5
- -21.5
- 11
- -1.5
- -8

Estimated Effect = Average at High – Average at Low

Factor A Estimated Effect = $\frac{64+87}{2} - \frac{75+95}{2} = -9.5$

27. You performed a full factorial DOE to improve the yield of a process with two factors at two levels and have measured the following response values. What is the estimated effect of Factor B:

		Factors		Response
		А	В	% Yield
Its	1	+	+	64
nen	2	-	+	75
Treatr	3	+	-	87
	4	-	-	95

- -9.5
- -21.5
- 11
- -1.5
- -8

Estimated Effect = Average at High – Average at Low

Factor A Estimated Effect = $\frac{64+75}{2} - \frac{87+95}{2} = -21.5$

28. You performed a full factorial DOE to improve the yield of a process with two factors at two levels and have measured the following response values. What is the estimated effect of the interaction between A & B.

		Factors		Response
		А	В	% Yield
ts	1	+	+	64
ner	2	-	+	75
eatr	3	+	-	87
Tre	4	-	-	95

- -9.5
- -21.5
- 11
- -1.5
- -8

Estimating the interaction effect means expanding the design matrix to include the interactions.

		Fact	tors	Interactions	Response	
		A	В	AB	% Yield	
Its	1	+	+	+	64	
ner	2	-	+	-	75	
eatr	3	+	-	-	87	
Tre	4	-	-	+	95	

Now we can perform the calculation for the interaction effect:

Estimated Effect = Average at High – Average at Low

Factor A Estimated Effect =
$$\frac{64+95}{2} - \frac{75+87}{2} = -1.5$$

29. You performed a full factorial DOE to improve the yield of a process with three factors at two levels. Identify all of the interaction effects below that should be considered "highs" when analyzing interactions:

			Factors		Interactions		5
		Α	В	С	AB	AC	BC
	1	+	+	+		Α	
	2	+	+	-	В		
lts	3	+	-	+		С	
nei	4	+	-	-			D
eati	5	-	+	+		E	
Tre	6	-	+	-	F		
	7	-	-	+		G	
	8	-	-	-			Н

- A
- B
- C
- D
- E
- F
- G
- н

If we complete the interaction design matrix, we can see which of the interactions would be considered "highs" for the interaction between the factors.

		Factors			Interactions		
		Α	В	С	AB	AC	BC
	1	+	+	+	+	+	+
	2	+	+	-	+	-	-
Its	3	+	-	+	-	+	-
ner	4	+	-	-	-	-	+
eatr	5	-	+	+	-	-	+
Ē	6	-	+	-	-	+	-
	7	-	-	+	+	-	-
	8	-	-	-	+	+	+

30. You performed a full factorial DOE to improve the yield of a process with three factors at two levels. Identify all of the treatments that would be considered "lows" for the second order interaction.

			Factors			
		Α	В	С		
	1	+	+	+		
	2	+	+	-		
Its	3	+	-	+		
ner	4	+	-	-		
eatr	5	-	+	+		
Tr	6	-	+	-		
	7	-	-	+		
	8	-	-	-		

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8

The first order interactions are AB, AC and BC. In this situation there is only 1x second order interaction – ABC.

Let's analyze the design matrix to determine the highs and lows for ABC. Based on this analysis, treatments 2,3,5 and 8 would represent the "lows" for the second order interaction (ABC).

			Interactions		
		Α	В	С	ABC
	1	+	+	+	+
	2	+	+	-	-
nts	3	+	-	+	-
nei	4	+	-	-	+
eati	5	-	+	+	-
Tre	6	-	+	-	+
	7	-	-	+	+
	8	-	-	-	-

31. You want to perform a DOE for a process with 4 factors, however you can only afford 6 treatment combinations.

you decide to do a quarter factorial with the following treatments.

	Factors					
	Α	В	С	D		
5	-	+	+	+		
6	-	+	-	+		
11	+	-	+	-		
12	+	-	-	-		

Interactions						
AB	AC	AD	BC	BD	CD	
-	-	-	+	+	+	
-	+	-	-	+	-	
-	+	-	-	+	-	
-	-	-	+	+	+	

- Main Effects of Factors A & B
- Main Effects of Factors B & C
- Main Effects of Factors A & D
- Main Effects of Factors B & D
- Interaction Effect AB and Interaction Effect AD
- Interaction Effect BC and Interaction Effect CD
- Interaction Effect AC and Interaction Effect BC
- Interaction Effect BD and Interaction Effect AB

	Factors						
	Α	A B C D					
5	-	+	+	+			
6	-	+	-	+			
11	+	-	+	-			
12	+	-	-	-			

Interactions								
AB AC AD BC BD C								
•	-	-	+	+	+			
-	+	-	-	+	-			
-	+	-	-	+	-			
-	-	-	+	+	+			

32. You want to perform a DOE for a process with 4 factors, however you can only afford 8 treatment combinations.

You decide to do a half factorial with the following treatments.

	Factors										
	Α	В	С	D							
1	+	+	+	+							
2	+	+	-	+							
3	+	-	+	+							
4	+	-	-	+							
13	-	+	+	-							
14	-	+	-	-							
15	-	-	+	-							
16	-	-	-	-							

	Interactions												
AB	AC AD BC BD CI												
+	+	+	+	+	+								
+	-	+	-	+	-								
-	+	+	-	-	+								
-	-	+	+	-	-								
-	-	+	+	-	-								
-	+	+	-	-	+								
+	-	+	-	+	-								
+	+	+	+	+	+								

- Main Effects of Factors A & B
- Main Effects of Factors B & C
- Main Effects of Factors A & D
- Main Effects of Factors B & D
- Interaction Effect BC and Interaction Effect AC
- Interaction Effect AC and Interaction Effect CD
- Interaction Effect BC and Interaction Effect AD
- Interaction Effect AB and Interaction Effect BD

		Factors											
	Α	В	С	D									
1	+	+	+	+									
2	+	+	-	+									
3	+	-	+	+									
4	+	-	-	+									
13	-	+	+	-									
14	-	+	-	-									
15	-	-	+	-									
16	-	-	-	-									

Interactions											
AB	AC	CD									
+	+	+	+	+	+						
+	-	+	-	+	-						
-	+	+	-	-	+						
-	-	+	+	-	-						
-	-	+	+	-	-						
-	+	+	-	-	+						
+	-	+	-	+	-						
+	+	+	+	+	+						

33. You want to perform a DOE for a process with 4 factors, however you can only afford 8 treatment combinations.

You decide to do a half factorial with the following treatments.

		Factors										
		Factor A	Factor B	Factor C	Factor D							
	1	+	+	+	+							
	3	+	-	-	+							
Its	5	-	+	-	+							
ner	7	-	-	+	+							
eatr	9	+	+	+	-							
Tre	11	+	-	-	-							
	13	-	+	-	-							
	15	-	-	+	-							

	Interactions											
AB	AC AD BC BD											
+	+	+	+	+	+							
-	-	+	+	-	-							
-	+	-	-	+	-							
+	-	-	-	-	+							
+	+	-	+	-	-							
-	-	-	+	+	+							
-	+	+	-	-	+							
+	-	+	-	+	-							

- Main Effects of Factors B & C
- Interaction Effect AD and Interaction Effect CD
- Main Effects of Factors A & the Interaction Effect of AB
- Main Effects of Factors B & C
- Interaction Effect BC and Interaction Effect BD
- Main Effects of Factors B & the Interaction Effect of AC
- Main Effects of Factors A & D
- Interaction Effect AB and Interaction Effect CD
- Main Effects of Factors C & the Interaction Effect of BC

		Factors					Interactions							
		Factor A	Factor B	Factor C	Factor D		AB	AC	AD	BC	BD	CD		
	1	+	+	+	+		+	+	+	+	+	+		
	3	+	-	-	+		-	-	+	+	-	-		
ts	5	-	+	-	+		-	+	-	-	+	-		
ner	7	-	-	+	+		+	-	-	-	-	+		
eatr	9	+	+	+	-		+	+	-	+	-	-		
Ē	11	+	-	-	-		-	-	-	+	+	+		
	13	-	+	-	-		-	+	+	-	-	+		
	15	-	-	+	-		+	-	+	-	+	-		

34. You performed a half factorial DOE to improve the yield of a process with four factors at two levels.

Identify all of the interaction effects below that should be considered "lows" when analyzing the interaction effects:

		Factors					Interactions						
		Factor A	Factor B	Factor C	Factor D		AB	AC	AD	BC	BD	CD	
	1	+	+	+	+				Α				
	3	+	-	-	+						В		
nts	5	-	+	-	+		С						
nel	7	-	-	+	+			D					
eati	9	+	+	+	-					E		F	
Tre	11	+	-	-	-						G		
	13	-	+	-	-			Н					
	15	-	-	+	-					I			

- A
- B
- C
- D
- E
- F
- G
- H
- 1

If we complete the interaction design matrix, we can see which of the interactions would be considered "lows" for the interaction between the factors.

		Factors						Intera	ctions		
		Factor A	Factor B	Factor C	Factor D	AB	AC	AD	BC	BD	CD
	1	+	+	+	+	+	+	+	+	+	+
	3	+	-	-	+	-	-	+	+	-	-
ts	5	-	+	-	+	-	+	-	-	+	-
ner	7	-	-	+	+	+	-	-	-	-	+
eatı	9	+	+	+	-	+	+	-	+	-	-
Tro	11	+	-	-	-	-	-	-	+	+	+
	13	-	+	-	-	-	+	+	-	-	+
	15	-	-	+	-	+	-	+	-	+	-